9x^2+48-122=x^2+6

Simple and best practice solution for 9x^2+48-122=x^2+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2+48-122=x^2+6 equation:



9x^2+48-122=x^2+6
We move all terms to the left:
9x^2+48-122-(x^2+6)=0
We add all the numbers together, and all the variables
9x^2-(x^2+6)-74=0
We get rid of parentheses
9x^2-x^2-6-74=0
We add all the numbers together, and all the variables
8x^2-80=0
a = 8; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·8·(-80)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*8}=\frac{0-16\sqrt{10}}{16} =-\frac{16\sqrt{10}}{16} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*8}=\frac{0+16\sqrt{10}}{16} =\frac{16\sqrt{10}}{16} =\sqrt{10} $

See similar equations:

| 12x=(4x-2)+62 | | -5p+6(6p-8)=28-7p | | -38+12+x=-12 | | 0.2x0.7=0.14 | | 3/4x=-46.50 | | -31x-41=-48 | | 7/8x^2=8x | | 4x-57=39 | | t(-3t-28)=0 | | 4^3x=8x+1 | | 5x-3/3x^2-5x-2=A/3x+1+B/x-2 | | 0.8/y=2/3/4 | | 0.7x2.4=1.68 | | 1/2+2x/3=3/2 | | 7r+10=80 | | 4x^2-3-2x=1 | | 11x=8x–6 | | x+19+4x+28+3x+13=180 | | 4y-15=7y+15 | | 13x-3=127 | | -91=7(7p+8) | | 5+8b=21 | | 4x-2=-9x-12 | | 54/18=x/2 | | 12x-17=-9 | | -1.6=-2/t2 | | 101x-1+80x=180 | | -1+2b=19 | | -6=-8+w/2 | | 7(d-2)=5(d-3)+(2d+1) | | 17+7=-3(6x-8) | | 5(3x+2)+2=2(1-7x) |

Equations solver categories